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Abstract -
Construction sites are dynamic, and the environment is

changing fast, which means the collective safety equipment,
such as fall protection barriers, should also be changed to
keep it compliant with the construction codes. However, any
safety equipment can become non-compliant for several rea-
sons, e.g., temporal removal in combination with incorrect
or omitted re-installation or changes in the building process.
Thus, there is a demand for frequent inspection of the equip-
ment, which is time- and labor-intensive as this is currently
done through manual examination by safety experts. In this
work, we utilize an unmanned aerial vehicle (UAV) to de-
tect the presence, absence, and defects of safety equipment in
construction work-site environments. Furthermore, the UAV
continuously inspects and provides safety object location in-
formation that human collaborators canuse to improve safety
within the environment. We utilize an 3D occupancy grid
representation to map the environment and compact point
pair feature representations for efficient and robust object
recognition and pose estimation. To assess the applicabil-
ity and accuracy of our methods for model-based pose esti-
mation of Building Information Model (BIM) structures, we
created a realistic, simulated construction environment. Our
experiment demonstrates the applicability and precision of
drone-aided localization and inspection of safety equipment
in the construction industries.
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1 Introduction

Construction is considered one of the most dangerous
industries due to the continuous change in the environment
[1]. Construction safety design and planning is, therefore,
a vital part of the construction business. Thus, compre-
hensive regulations and guidelines have been developed
to keep construction workers safe while construction work
is undertaken. Despite the labor-intensiveness of the cre-
ation of a safe construction plan, it is paramount. As this
is the case, time and effort are allocated to facilitate and
ensure health and well-being for the workers and prevent
fatalities, severe injuries, minor injuries, and close call
accidents (also referred to as prevention through design
(PtD)). A statistical analysis of industries and their hazard
types has been compiled into [2] in the US. The report

Figure 1. Simulationmission of an autonomous con-
struction site inspection task using a multi-stereo
camera UAV.

from 2019 shows that fatalities in the private construction
industry correspond to 21.6% of fatalities (4907). Fur-
thermore, the report shows that fatalities exclusively as a
result of falls correspond to 33.5%. This is the reason
that our work is focusing on fall hazards and more con-
cretely protective barriers. We base the safe design on a
software system called SafeCon [3], which automatically
identifies the hazard fall-spaces in the BIM according to
the regulation described in BG Bau 100 [4]. The system
enhances the model with the safety equipment necessary
to adhere to the [4] regulation. Another indispensable
aspect of safety in construction operations is inspecting
and localizing missing or deficient safety equipment (e.g.,
guardrails). Inspecting collective safety equipment is also
a labor-intensive task as construction sites are very dy-
namic; thus, the inspection must happen with high fre-
quency. Often, the installation of the measure differs from
the intended quality designed in digital models. Using
data from an UAV provides a real-time object location to
centralized or distributed systems. As-planned vs. as-
performed comparisons can extract deviations that have to
be followed up and addressed.
The proposed method identifies critical incidents and
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points these out to the responsible personnel in a construc-
tion site’s centralized safety operations center or individual
workers through augmented reality (AR) glasses. A solu-
tion for autonomous barrier detection and pose estimation
in construction environments ismade bymapping the envi-
ronment using stereo camera systems and utilizes 3D point
cloud information to detect the type and location of barri-
ers in the environment. We base our work on the method
presented in [5] representing objects using a hash table of
shape features, which efficiently allows matching features
that vote for object pose hypotheses. An experiment in a
realistic gazebo environment demonstrate the applicabil-
ity of our method for localization and pose estimation of
barrier structures in construction site environments.

2 Related Work
In order to create a safe construction design and plan,

one must include both the rules that apply to the coun-
try and region where the construction is undertaken. The
rules describe clearly what, for example, a guard rail has
to comply with to be correctly installed. A safeBIM can
bemodeled manually, where the as-designed baseline plan
is enhanced with safety equipment by safety experts ac-
cording to the safety rules, which is the typical approach
nowadays [6]. Another approach of turning the empty
BIM into a safeBIM is utilizing an automated framework,
like SafeCon [3]. In this work, the safety regulation is
modeled into a logic-based domain model, consisting of
spatial artifacts that can be used to analyze and enhance
the incoming BIM. The process flags the presence of fall
hazard paces, which need mitigation by collective protec-
tive equipment (e.g., guardrails). The output is a safeBIM
(as-designed) plan that can be used to compare the actual
state (as-built) of a construction site captured in, e.g., point
cloud data.

In terms of automated safety inspection in construction,
two main branches of research exist: (1) is based on sen-
sors placed on UAV. Therefore, the acquisition of the
as-built-state is included in the research, and (2) where
the focus is more on the training and comparing different
computer vision methods/approaches and less on the data
acquisition. In the first branch, different research methods
have been carried out. [7] presents a well-defined process
(using IDEF0-modeling) to apply drones on a construc-
tion site and integrate UAV and BIM. [8] also presents a
workflow that is more dedicated to detecting and locating
guardrails and openings on surfaces. The analysis is based
on point cloud data that is generated fromRGB images and
video feeds. A pilot study was carried out in a mock-up
setting, where the UAV records a guardrail and an opening
in the testbed. The study in [9] is another example where
a UAV is applied for guardrail inspection. The objective is
to analyze the guardrails’ level of compliance with safety

regulations. The inspection is performed based on visual,
physical markers placed on the guardrail boards and a dis-
tance calculation. The distance between makers facilitates
the compliance checking of the guardrail. [10, 11] de-
velop a UAV platform that can be used in the construction
industry and analyze the accuracy and barriers in UAV
application in this industry. Finally, [12, 13] utilizes the
UAV as help to reach inaccessible, hard-to-reach, and un-
safe areas for safety assessment. The analysis is mainly
based on manual inspection of the video/image feed.

The other branch of fall hazard prevention equipment
inspection concentrates more on computer vision than im-
age acquisition. [14] applies an R-CNN to detect workers
in the scene and, afterward, a CNN to detect if a worker
uses a safety harness [15]. Investigates safety rule com-
pliance of guardrails on scaffolds using 3d point cloud
data. They first find the working platforms by slicing
the point cloud and locating the guardrails in the close
vicinity. Subsequently, the guardrails are conformance
checked. [16] applies transfer learning in their process of
detecting guardrails.

Object recognition and pose estimation play a role of
significant importance in robotics applications. In the fol-
lowing, we review the related work on this topic in regards
to 3D point cloud data. There are two main approaches to
this problem that depend on the availability of 3D object
models: 3D model-based and learning-based. If one has a
description of the 3D shape of the object, either given by a
parametric surface representation or by a CAD mesh rep-
resentation, the 3D model-based methods are often used
for simultaneous object recognition, and 3D pose estima-
tion [17]. On the other hand, if such representations are
not available, the dominant approaches rely on machine
learning techniques that learn an internal model represen-
tation given a set of image samples of the object, acquired
by the robot sensors [18].

One of the most successful approaches for model-based
3D object recognition using point clouds are based on
[19],[20]where a global descriptor for a given object shape
model is created, using point pair features. The CAD
model of the object is used to create an extensive database
of features. At run-time, the matching process is done
locally using an efficient and robust voting scheme similar
to the Generalized Hough Transform [21]. Each point pair
detected in the environment casts a vote for a particular
object from a database of known objects, and a 3D pose
[22],[5].

In this work, we study the suitability of the latter meth-
ods for object detection in construction environments,
since we assume that geometric models (i.e., 3D CAD)
representing known objects in the environment are pro-
vided.
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Figure 2. Overview of steps included in automated collective construction safety equipment inspection.

3 Methodology

In this work, we follow the overall approach illustrated
in Figure 2, which include three inputs: (1) the empty
BIM, that is assumed to be available for most construction
projects, (2) A safeBIM containing the demanded safety
barriers accordingly to safety regulation [4], and is rely-
ing on the SafeCon-application developed in [3], and (3)
database of safe and unsafe objects created based on same
safety regulation [4].
To perceive and capture the environment, we utilize

point cloud data acquired from RGB-D cameras. These
point clouds are used for recognition and estimation of the
pose of safety barrier objects in construction sites (safe
and unsafe) simultaneously. As shown in Figure 2 we use
the point cloud data collected by the UAV to (I) Extract
the ground plane, (II) Detect and subtract empty BIM from
the point cloud data, and (III) perform barrier detection,
location, and pose estimation. The first step of the frame-
work is performed by detecting the predominant plane in
the scene using a RANSAC plane fitting approach. Then,
the second step is utilizing a combination of Point Pair
Feature (PPF) and Generalized Hough Transform (GHT)
detect the empty building using a pre-existing CADmodel.
Finally, the same method is employed iteratively to detect
barrier structures.
We rely on the method of [23] that extracts point-pair

features (PPF) from 3D point clouds with associated nor-
mals [20] as local descriptors and employs a GHT to si-
multaneously estimate the pose and object type, using a
clever voting scheme.
In an offline phase, we build a database of known objects

from existing CADmodels. Then, we extract a point cloud
with associated normals for each model and build a hash
table containing all model PPFs.
Let sA = (pA , nA ) and s8 = (p8 , n8) represent two surflets

(i.e. point and associated normal). For each surflet pair
(see Figure 3) belonging to the model point cloud, we store

them in a hashtable using the following hash function:

PPF(sA , s;) = ( | |3 | |, ∠(nA , d), ∠(n8 , d), (nA , n8)) (1)

We extract PPFs from the captured point clouds during
the online recognition phase and match them against the
hash table, and compute the pose that align PPF matches.
Then, the candidate poses with the highest number of votes
in the Hough accumulator are retrieved. This step is per-
formed for each model in the database of known objects.
Themodel and posewith the highest score are selected. Fi-
nally, since the Hough voting space is discrete, we employ
an iterative closest point (ICP) algorithm [24] to fine-tune
the estimated pose of the object. The ICP algorithm it-
eratively searches for the transformation that minimizes
the distance between points belonging to the scene, and
the ones belonging to the most voted CAD model one. In
each iteration, the points from the scene will be matched to
the closest points in the model from the database. Subse-
quently, the transformation that minimizes the sum of the
error between corresponding points is estimated, using a
gradient descent optimization method. Finally, the trans-
formation is performed to the point cloud, and the process
starts over until it converges, i.e., no reassignment of the
points is performed. We initialize the ICP method with
the discretized pose determined with the GHT method, to
speed-up convergence speed.

Figure 3. Point pair feature.
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(a) 3D reconstruction (initial). (b) 3D reconstruction (last).

(c) Detected ground and building models.

Figure 4. Environment 3D reconstruction from point
cloud data collected by a UAV and estimated loca-
tions of known objects (i.e., CAD models).

4 Experiment
In our experiment, we let the UAV fly around the con-

struction site and build a 3D map of the environment. In
an offline phase, we train our detector with different types
of barriers, building a hash-table of point pair feature de-
scriptors for each barrier type. In the online phase, we
apply the detector to point cloud mapping data, to find
instances of barriers.

4.1 Experimental Setup

We perform the experiment in a simulated construction
site (see Figure 4), and introduced an infrared noise with
Gaussian distribution of fixed mean value of 0<<, and
a standard deviation of 1<< in the collected point cloud
data. The colors in the 3D occupancy grid (see Figure
4) representing the environment reconstructed with point
cloud data represent relative height. Figure 4(c) shows
the super-imposed building CAD model after estimation
and detected ground plane and building location, that is
performed after completion of point cloud data acquisi-

tion. In order to evaluate location and pose estimation
error performance, we developed two different experimen-
tal scenarios, in a realistic gazebo simulation environment
[25].

Figure 5. Safety code BG Bau 100 [4] illustration
using horizontal boards with a thickness of 4<<
and height of 200<<.

The experimental study is based on the BG Bau 100
safety code [4], which is illustrated in Figure 5. This
building code describes installing compliant and safety
barriers in a construction site, such as high-rise buildings.
The safety code describes how to comply using different
board dimensions, but the one used and illustrated in this
work utilizing 40G200<< boards. Besides the safe version
of the BIM, we have created an unsafe version, where
non-compliant and hazardous scenarios are introduced on
purpose (see Figure 8, third row).
Wemodeled the faulty and hazardous scenarios to create

unsafe BIM, introducing different safety code violations.
An overview of the violations is shown in Figure 6, where
we introduce issues regarding six different violations:

1. Absence of horizontal boards
2. Absence of vertical poles
3. Combination of absence of horizontal and vertical

boards
4. Part of guardrail is absent or guardrail completely

absent
5. Horizontal board is diagonal
6. Horizontal board placed to close to bottom or top,

and the vertical pole placed too far to the left

The placement of the faulty object are represented
graphically in Figure 7, which is an overview of the south
and north facing facade, where hazardous situations are
introduced in the unsafe BIM. Therefore, the east and
west face are not altered in the unsafe model (also visible
in Figure 8). Furthermore, we provide an overview of
the introduced scenarios in Table 1, where the number of
occurrences of each variation has been counted for later
ground truth comparison, which also contains translation
and rotation from the BIM origin to each of the guardrails.
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Figure 6. Object overview: safe variations are com-
pliant with regulation, and unsafe objects violating
with regulation [4].

Figure 7. Overview of the placement of the different
faulty scenarios shown in Figure 6. Non-labeled
squares are not altered and are therefore safe and
compliant with the safety code.

4.2 Evaluation Metrics

In order to assess the performance of our 6D pose es-
timation approach, we consider the error of the estimated
pose P̂ = (R̂, t̂), with respect to the ground truth pose
P = (R, t), according to

4trans =
t − t̂

 (2)

4rot =
R − R̂

 (3)

Table 1. Number of different correct and anomalous
(incl. variation) in Figure 6, placed in the safe and
unsafe BIM (Figure 7)

Guardrail
scenario

Safe Model
[No.]

Unsafe
[No. (Var1,2,3)]

Correct 194 139
Anomalous 0 36

Horizontal 0 6(2,2,2)
Vertical 0 6(2,2,2)
Combination 0 6(2,2,2)
Part 0 6(2,2,2)
Diagonal 0 6(2,2,2)
Spacing 0 6(2,2,2)

whereR and t represent rotation and translation, and 4trans,
and 4rot the translation and rotational errors, respectively.
From Table 2 we observe that the performance of the

proposed method is relatively good as the average transla-
tion and rotation errors are low in comparison to the sizes
of the models. The environment we operate has the di-
mensions of approximately 43G41G33< (,G�G�), where
a deviation of 0.54< corresponds to 1.64%. We calculate
this by averaging the dimension corresponding to 39<.
This is reasonable as the error in Table 2 is also based
on the average along all three axes (translational error).
Furthermore, the rotational error of 0.88◦ corresponds to
a deviation of 0.99%, which is also impressively low.

Table 2. Resulting average translation and rotation
error of 6D pose estimation performing PPF in com-
bination with ICP

Method Average 4trans [<] Average 4rot [◦]
PPF+ICP 0.540652 0.880321

5 Discussion
Our framework for automatic safety barrier detection

and inspection in construction sites using vision-based
UAVs and a database of CAD models, which can be ex-
tended to contain other types of safety railing. The ob-
tained results in a realistic simulation environment demon-
strate our method’s potential applicability in real con-
struction sites. Furthermore, our results show that we
could estimate the location of BIM structures accurately
with sub-meter and sub-degree precision, corresponding
to 1, 63% and 0.99% in terms of translation and rotation,
respectively. Based on these results and experience with
correspondence between reality and the realistic simula-
tion environment, we intend to employ this method in an
actual construction setting and confirm its applicability.
A system like the one we are proposing would assist the
safety expert in pointing out issues that are not discovered
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Figure 8. Overview of all four faces (south, west, north, and west, column 1 to 4 respectively) of the three utilized
models (empty, safe, and unsafe, row 1 to 3 respectively).
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manually and improve the safety at the construction site.
As the system improves, it could very well also fully auto-
mate the inspection of some objects. However, this should
still be a collaboration where the safety expert can solve
issues instead of wasting time looking at correctly installed
barriers. Furthermore, we will study ways to classify the
detected barriers to separate the hazards and even propose
mitigations in future work. Furthermore, automating the
launch of the UAV and improving the autonomous ex-
ploration of the construction would be beneficial for the
applicability and a promising future research direction.

6 Conclusion
This paper proposes a system utilizing UAVs to handle

the labor-intensive tasks of collective safety equipment
inspection. Much effort is put into inspection of the con-
struction site, and some of these tasks should be automated
to get a higher temporal resolution. The proposed system
is initially analyzed in a simulation tool with the objective
of determining feasibility and applicability. Our exper-
iments demonstrate that automation of the inspection is
possible with high precision, which can eventually lead to
the actual replacement of current practices.
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